\mathbb{C}^* n'est pas simplement connexe

CloudSea

Cadre

On montre que \mathbb{C}^* n'est pas simplement connexe en montrant que l'intégrale sur un chemin ne dépend que de la classe d'homotopie de ce chemin

Recasages:

- [[203 Compacité]]
- [[204 Connexité]]
- [[245 Analyse complexe]]

Référence : Analyse complexe - Jacques Douchet

Déroulé du développement

On se donne f holomorphe sur Ω et γ_0, γ_1 deux chemins de Ω qui ont les mêmes extrémités a et b

Montrer que si γ_0 est homotope à γ_1 alors $\int_{\gamma_0} f(z) \ \mathrm{d}z = \int_{\gamma_1} f(z) \ \mathrm{d}z$ Construire des chemins polygonaux $\tilde{\gamma}_s$ et construire $\delta > 0$ tel que $|s-s'| < \delta \Rightarrow \|\tilde{\gamma}_s - \tilde{\gamma}_{s'}\|_{\infty} \leq 3r$

Quitte à reparamétrer, on suppose que les chemins sont paramétrés par [0,1]On a donc une homotopie $H:[0,1]\to\Omega$, qui vérifie donc $H(\cdot,i)=\gamma_i,\ i=0,1$ et $H(0,\cdot)$ constant égal à a et $H(1,\cdot)$ constant égal à b

Par continuité de $H, K = H([0,1]^2)$ est un compact inclus dans U, on a donc r>0 tel que $\forall z \in K, B(z,6r) \subseteq \Omega$

Les γ_s sont continus, mais à priori pas C^1 par morceaux, donc on peut pas intégrer dessus ... mais on est sauvé par autre chose

A chaque chemin $\gamma_s = H(\cdot, s), \ 0 < s < 1$ on associe $\tilde{\gamma}_s$ un chemin polygonal de a à b tel

que $\|\gamma_s - \tilde{\gamma}_s\|_{\infty} \le r$ et on pose $\tilde{\gamma}_0 = \gamma_0$ et $\tilde{\gamma}_1 = \gamma_1$ Par construction, les $\tilde{\gamma}_s$ sont tous inclus dans Ω

H est uniformément continue, donc on a $\delta > 0$ tel que $|s-s'| \le \delta \Rightarrow |H(t,s)-H(t,s')| \le r$ En particulier $\|\gamma_s - \gamma_{s'}\|_{\infty} \le r$, et donc $\|\tilde{\gamma}_s - \tilde{\gamma}_{s'}\|_{\infty} \le 3r$

Soient s,s' tels que $|s-s'| \le \delta$, construire une subdivision $0=t_0 < \cdots < t_n=1$ et des boules B_k centrées en $\tilde{\gamma}_s(t_k)$ telles que les bouts de $\tilde{\gamma}_s, \tilde{\gamma}_{s'}$ sur $[t_{k-1}, t_k]$ soient inclus dans $B_{k-1} \cap B_k$

Soient s, s' fixés tels que $|s - s'| \le \delta$, on va montrer que les intégrales sur $\tilde{\gamma}_s$ et sur $\tilde{\gamma}_{s'}$ sont égales

 $\tilde{\gamma}_s$ est uniformément continue donc on a une subdivision $0=t_0 < t_1 < \cdots < t_n=1$ qui vérifie pour tout k

$$\sup_{u,v \in [t_k, t_{k+1}]} |\tilde{\gamma}_s(u) - \tilde{\gamma}_s(v)| \le r$$

Pour $0 \le k \le n$, on défini $B_k = B(\tilde{\gamma}_s(t_k), 4r) \subseteq \Omega$ (par construction de r + une IT) Pour $1 \le k \le n$, on a

- $-\tilde{\gamma}_s([t_{k-1},t_k]) \subseteq B_{k-1} \cap B_k$ (c'est juste une IT)
- $\tilde{\gamma}_{s'}([t_{k-1}, t_k]) \subseteq B_{k-1} \cap B_k$ (pareil, mais il en a deux en utilisant $\|\tilde{\gamma}_s \tilde{\gamma}_{s'}\| \leq 3r$)

Montrer que pour
$$|s-s'| \leq \delta$$
 on a $\int_{\tilde{\gamma}_{s'}} f(z) \ \mathrm{d}z - \int_{\tilde{\gamma}_s} f(z) \ \mathrm{d}z = 0$ et conclure

f est holomorphe, donc par théorème, elle admet une primitive F_k sur tous les B_k qui sont convexes. Pour $1 \le k \le n$, F'_{k-1} et F'_k coïncident sur $B_{k-1} \cap B_k$, elles sont donc égales à une constante près. Donc pour $1 \le k \le n$, on a

$$F_{k-1}(\tilde{\gamma}_{s'}(t_k)) - F_{k-1}(\tilde{\gamma}_{s}(t_k)) = F_k(\tilde{\gamma}_{s'}(t_k)) - F_k(\tilde{\gamma}_{s}(t_k)) := \sigma_k$$

En particulier pour k = 0, on a $t_0 = 0$ et $\tilde{\gamma}_{s'}(0) = \tilde{\gamma}_s(0)$, donc $\sigma_0 = 0$ De même on a $\sigma_n = 0$

On obtient donc

$$\int_{\tilde{\gamma}_{s'}} f(z) \, dz - \int_{\tilde{\gamma}_{s}} f(z) \, dz = \sum_{k=1}^{n} F_{k-1}(\tilde{\gamma}_{s'}(t_{k})) - F_{k-1}(\tilde{\gamma}_{s'}(t_{k-1}))
- \sum_{k=1}^{n} F_{k-1}(\tilde{\gamma}_{s}(t_{k})) - F_{k-1}(\tilde{\gamma}_{s}(t_{k-1}))
= \sum_{k=1}^{n} \sigma_{k} - \sigma_{k-1}
= \sigma_{n} - \sigma_{0}
= 0$$

Donc en subdivisant [0,1] en p intervalles de même longueur $l<\delta,$ on obtient en répétant p l'égalité précédente

$$\int_{\gamma_0} f = \int_{\tilde{\gamma}_0} f = \int_{\tilde{\gamma}_1} f = \dots = \int_{\tilde{\gamma}_1} f = \int_{\gamma_1} f$$

En déduire que \mathbb{C}^* n'est pas simplement connexe

Soit γ un lacet contractile sur un ouvert Ω de \mathbb{C} , alors γ est homotope à un chemin constant c, donc par ce qui précède, pour tout fonction holomorphe sur Ω , on a

$$\int_{\gamma} f(z) \, \mathrm{d}z = \int_{c} f(z) \, \mathrm{d}z = 0$$

En particulier si Ω est simplement connexe, alors l'intégrale de f sur tout lacet est nulle

Or soit $\gamma(t)=e^{2i\pi t}$ lacet de \mathbb{C}^* et $f(z)=\frac{1}{z}$ holomorphe sur $\mathbb{C}^*,$ on a

$$\int_{\gamma} f(z) \, dz = \int_{0}^{1} 2i\pi \frac{e^{2i\pi t}}{e^{2i\pi t}} \, dt = \int_{0}^{1} 2i\pi \, dt = 2i\pi \neq 0$$

Donc \mathbb{C}^* n'est pas simplement connexe

Détail de certains points

Justifier le "quitte à reparamétrer"

Soit $\gamma: [a,b] \to \Omega$, on défini $\delta(t) = \gamma((1-t)a + tb)$ de sorte que $\delta: [0,1] \to \Omega$ On a alors

$$\int_{\delta} f(z) dz = \int_{0}^{1} f(\delta(t))\delta'(t) dt$$

$$= \int_{0}^{1} f(\gamma((1-t)a+tb)) (b-a)\gamma'((1-t)a+tb) dt$$

$$= \int_{a}^{b} f(\gamma(u)) (b-a)\gamma'(u) \frac{du}{b-a}$$

$$= \int_{a}^{b} f(\gamma(u))\gamma'(u) du$$

$$= \int_{\gamma} f(z) dz$$

Donc on peut reparamétrer pour se ramener à un chemin sur [0, 1]

Justifier l'existence de r

Soit $f: K \to \mathbb{R}_+$ qui à z associe la distance de z à Ω^c f est continue (même 1-lip) donc admet un minimum atteint en un certain $z \in K$ Donc comme Ω est ouvert, $d(z, \Omega^c) > 0$, donc pour r assez petit, on a bien $d(z, \Omega^c) \geq 6r$. Donc pour tout $w \in K$, on a bien $B(w, 6r) \subseteq \Omega$

Justifier l'existence des $\tilde{\gamma}_s$

Soit γ un chemin de \mathbb{C} et r > 0, montrons qu'il existe un chemin polygonal $\tilde{\gamma}$ tel que $\|\gamma - \tilde{\gamma}\| \leq r$

 γ est continue sur un compact (à savoir [0,1]) donc uniformément continue par Heine. Donc on a $\delta > 0$ tel que $|s-t| \leq \delta \Rightarrow |\gamma(s) - \gamma(t)| \leq \frac{r}{2}$

Soit $0 = t_1 < \cdots < t_n = 1$ tels que $|t_i - t_{i+1}| \le \delta$. Soit $\tilde{\gamma}$ le chemin polygonal qui relie les $\gamma(t_i)$ (plus précisément, $\gamma((1-s)t_i + st_{i+1}) = (1-s)\gamma(t_i) + s\gamma(t_{i+1})$) Soit $t \in [0,1]$ et i tel que $t_i \le t \le t_{i+1}$. On a

$$\begin{aligned} |\gamma(t) - \tilde{\gamma}(t)| &= |\gamma(t) - \tilde{\gamma}(t_i) + \tilde{\gamma}(t_i) - \tilde{\gamma}(t)| \\ &\leq |\gamma(t) - \tilde{\gamma}(t_i)| + |\tilde{\gamma}(t_i) - \tilde{\gamma}(t)| \\ &\leq |\gamma(t) - \gamma(t_i)| + |\tilde{\gamma}(t_i) - \tilde{\gamma}(t_{i+1})| \\ &\leq \frac{r}{2} + \frac{r}{2} \\ &< r \end{aligned}$$

Version révisions

On se propose de montrer que \mathbb{C}^* n'est pas simplement connexe

Pour ça on va d'abord montrer que si γ_0 et γ_1 sont deux chemins homotopes d'un ouvert U, alors pour toute fonction f holomorphe sur U, on a

$$\int_{\gamma_0} f(z) \, \mathrm{d}z = \int_{\gamma_1} f(z) \, \mathrm{d}z$$

Quitte à reparamétrer, on suppose que γ_0 et γ_1 sont paramétrés sur [0,1]. On se donne alors H une homotopie de γ_0 à γ_1 et pour tout $s \in [0,1]$ on note $\gamma_s = H(s,\cdot)$

- 1. Soit $K = H([0,1]^2)$, montrer qu'il existe r > 0 tel que pour tout $z \in K$, $B(z,6r) \subseteq U$
- 2. Pour tout 0 < s < 1, montrer qu'il existe un chemin polygonal δ_s tel que $\|\gamma_s \delta_s\| \le r$

On pose en plus $\delta_0 = \gamma_0$ et $\delta_1 = \gamma_1$

- 3. Montrer qu'il existe $\alpha > 0$ tel que $|s s'| \le \alpha \Rightarrow ||\delta_s \delta_{s'}|| \le 3r$ On se donne s, s' tels que $|s - s'| \le \alpha$
- 4. Construire une subdivision $0 = t_0 < \cdots < t_n = 1$ de [0, 1] telle que pour tout k on ait

$$\sup_{t_k \le u, v \le t_{k+1}} |\delta_s(u) - \delta_s(v)| \le r$$

- 5. Soit $B_k = B(\delta_s(t_k), 4r)$ pour tout k, montrer que $B_k \subseteq U$ et que les portions de δ_s et $\delta_{s'}$ sur $[t_{k-1}, t_k]$ sont incluses dans $B_{k-1} \cap B_k$
- 6. Soit F_k une primitive de f sur B_k pour tout k, montrer que F_{k-1} et F_k diffèrent d'une constante

On peut alors définir

$$\sigma_k = F_{k-1}(\delta_s(t_k)) - F_{k-1}(\delta_{s'}(t_k)) = F_k(\delta_s(t_k)) - F_k(\delta_s(t_k))$$

- 7. Montrer que $\sigma_0 = \sigma_n = 0$
- 8. En faisant un télescopage, montrer que

$$\int_{\delta_s} f(z) \, \mathrm{d}z = \int_{\delta_{s'}} f(z) \, \mathrm{d}z$$

9. En déduire le résultat attendu sur les intégrales selon γ_0 et γ_1

10. En appliquant le résultat à $f(z)=\frac{1}{z}$ sur un chemin bien choisi, montrer que \mathbb{C}^* n'est pas simplement connexe